Staff Update on Recent Activities to Support Development of More Stringent GHG Emission Standards for Model Year 2017-2025 Passenger Vehicles

Meeting of the Air Resources Board October 21, 2010

Current GHG Standards in California

- Adopted 2004
- EPA waiver received 2009
- Standards began w/ 2009 models
- EPA adopted similar standards for 2012-16 models
 - Auto manufacturers agree standards feasible
- ARB allows Federal compliance to satisfy CA requirements
 - 2012-2016 models
 - One fleet meets both state and federal requirements

Greenhouse Gas Standards: 2017+ Passenger Vehicles

- In May, President directs EPA & NHTSA to develop GHG and fuel economy standards for 2017-2025 model passenger vehicles
 - Requests CA participate in technical assessment
 - Report by Sept. 30
 - Governor accepts
 - ARB requests report evaluate a range of annual GHG improvements
 - 3% to 6% per year

GHG Standards Evaluated - 2025 Models

Scenario (Improvement/yr)	CO2 gpm	MPGe* (test)	~ MPGe* (on-road)
0% - 2016	250	35	28
3%	190	47	37
4%	173	51	41
5%	158	56	45
6%	143	62	50

^{*} Average of passenger vehicles, national fleet mix. MPGe assumes all reduction is from tailpipe.

Information Used

- Meetings with stakeholders
- Drivetrain modeling (Ricardo)
- Mass reduction study (Lotus)
- Vehicle teardowns cost (FEV)
- Battery cost (DoE)
- OMEGA Compliance model (EPA)
 - Selects optimum approach given costs and GHG reduction achieved by various technologies
 - Assumed industry average company

Primary Technologies Evaluated (relative to 2016 models)

- Mass reduction (~15 to 25%)
 - 10% reduction → 6% FE increase
- Improved gasoline engines
 - Downsized, cooled EGR, high turbo boost
- Strong hybrids (P2 and 2 mode)
- Plug electric vehicles
 - Plug hybrid and pure battery EV

4 Technology Pathways Evaluated

- Manufacturers may choose different approaches to reduce GHG emissions
 - A. Hybrid focus (e.g. Prius)
 - B. Mix of A and C
 - C. Advanced engines and mass reduction focus
 - D. Electric vehicle focus
- Each pathway evaluated for 3-6% annual improvement in GHG emissions
- Results for Pathway B presented today

Results

Interim Joint Technical Assessment Report:

Light-Duty Vehicle Greenhouse Gas Emission Standards and Corporate Average Fuel Economy Standards for Model Years 2017-2025

Office of Transportation and Air Quality U.S. Environmental Protection Agency

Office of International Policy, Fuel Economy, and Consumer Programs National Highway Traffic Safety Administration U.S. Department of Transportation

> California Air Resources Board California Environmental Protection Agency

> > September 2010

California Environmental Protection Agency

Air Resources Board

Technology Needed for Compliance - 2025 Models

Stringency, % GHG	Ma Reduc		Advanced	HEVs,	Plug
change/yr	#s	%	engine, %	%	EV, %
3%	658	18	52	3	0
4%	733	20	63	18	0
5%	733	20	49	43	1
6%	712	19	44	47	9

^{*} Limited to a maximum 20% in this Scenario B

Technology Observations for this Scenario

- Technology is available to meet up to 6%/year GHG improvement
- Mass reduction is most cost effective
- Highly efficient gasoline engines important for reducing GHG
- Significant growth in hybrids needed except at lowest annual improvement
- Plug EVs only necessary if standards require 6% annual GHG reduction

More Electric Drive Vehicles Coming Soon

HYBRIDS

Today

>15 Models

2011-12

Lincoln MKZ

Honda Fit

Honda CR Z

Hyundai Sonata

Infinity M

Kia Optima

VW Toureg

Audi A8

Audi Q5

BMW 5

Advanced Electric Drive Vehicles Coming Soon

Plug-in Hybrids

Ford Escape

Fiskar Karma

Chevy Volt

Prius

Volvo V70

Audi A1

Fiskar Nina

BYD F3DM

All-electric

Audi e-Tron

BYD E6

Mitsu. iMEV

Nissan Leaf

Coda

Smart

BMW Megacity

Tesla S

Fuel Cell Electric (2015-16 Intro.)

Honda Clarity

Mercedes

GM

Toyota

Ford **Transit**

Toyota IQ

New Vehicle Price Increase

Stringency,	Incremental Price*		
% GHG change/yr	Cars	Trucks	
3%	\$753	\$1,047	
4%	\$1,070	\$2,465	
5%	\$1,748	\$3,335	
6%	\$2,698	\$4,327	

Life Cycle Costs*

Stringency, % GHG change/yr	Incremental vehicle price, fleet	Fuel savings	Breakeven point, years
3%	\$849	\$5,933	1.5
4%	\$1,522	\$7,563	2.2
5%	\$2,263	\$9,222	2.8
6%	\$3,227	\$10,606	3.7

Cost Observations for this Scenario

- Lifetime fuel savings far exceed new vehicle price increase
- First owner breaks even on net cost
 - 4 years or less

Roadmap to Reduce GHG by 80% by 2050*

On the Path to 2050 Goal?

	Cum. # Adv. Veh's.		
	in 2025, millions		
	6% annual GHG ↓	"2050" plan, (in 2025)	
HEVs	4 M	5.9 M	
EVs (Plug-EVs/FCVs)	0.5 M	2.7 M	

Observations re: 2050 Plan

- GHG standards for 2017-25 need to be at upper end of stringency evaluated
- The ZEV program is needed to help jumpstart commercialization of advanced, electric drive vehicles
- Beyond 2025 rapid change to electric drive vehicles with low carbon intensity fuels is needed to meet 2050 goal

Next Steps

- Continue to work with EPA/NHTSA
 - Complete on-going studies
- Refine technical and economic assessments needed for ISOR
- Proposal to Board in early 2011
- EPA/NHTSA standards in late 2012
 - One national standard possible?